欢迎访问南京邮电大学计算机学院、软件学院、网络空间安全学院!
当前位置:网站首页> 个人主页 > 文章详情

郭贤杰

来源: 计算机学院 | 发表时间: 2025-06-10 | 浏览次数: 10

 

姓名:郭贤杰

职称:讲师

部门:计算机学院、软件学院、网络空间安全学院

研究方向:因果发现、联邦学习、可信人工智能

邮箱:xianjieguo@njupt.edu.cn

 

个人简介:

郭贤杰,男,中共党员,现任南京邮电大学计算机学院、软件学院、网络空间安全学院讲师。202412月毕业于合肥工业大学计算机与信息学院,获工学博士学位。202310月至202410月作为国家公派联合培养博士生在新加坡南洋理工大学计算与数据科学学院从事合作研究。入选2024年度中国科协青年人才托举工程博士生专项计划(托举学会:中国计算机学会),荣获FL@FM-NeurIPS'24优秀学生论文奖。主要从事人工智能、数据挖掘领域研究,重点关注因果发现、联邦学习、特征选择等方向,致力于解决人工智能模型的可解释性、隐私保护等问题。近年来在IEEE TKDEACM CSURIEEE TNNLSACM TISTIEEE TBDIEEE TAI等国际重要期刊,以及AAAIIJCAICIKM等国际顶级会议上发表18篇学术论文,其中以第一作者身份发表10篇(含CCF-A类论文5篇)。担任人工智能与数据挖掘领域NeurIPSICMLICLRAAAIIJCAI等国际顶级会议和IEEE TKDEIEEE TNNLSACM TKDDIEEE TCSVTMachine Learning等国际权威期刊的审稿人。参与科技部科技创新2030-新一代人工智能重大项目:跨媒体因果推断与可信机器学习、科技部科技创新2030-新一代人工智能重大项目:常识知识学习与因果分析、国家自然科学基金面上项目:面向隐私保护数据的联邦因果关系推断算法研究等多项项目。更多信息可访问个人主页:https://xianjie-guo.github.io/

 

科研成果:

[1] Xianjie Guo, Kui Yu, Lizhen Cui, Han Yu, and Xiaoxiao Li. Federated Causally Invariant Feature Learning. Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI), 2025.CCF-A类会议

[2] Xianjie Guo, Kui Yu, Lin Liu, Jiuyong Li, Jiye Liang, Fuyuan Cao, and Xindong Wu. Progressive Skeleton Learning for Effective Local-to-Global Causal Structure Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024.SCI一区/CCF-A类期刊

[3] Xianjie Guo, Kui Yu, Lin Liu, and Jiuyong Li. FedCSL: A Scalable and Accurate Approach to Federated Causal Structure Learning. Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024.CCF-A类会议

[4] Xianjie Guo, Kui Yu, Hao Wang, Lizhen Cui, Han Yu, and Xiaoxiao Li. Sample Quality Heterogeneity-Aware Federated Causal Discovery through Adaptive Variable Space Selection, Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI), 2024.CCF-A类会议

[5] Xianjie Guo, Kui Yu, Lin Liu, Peipei Li, and Jiuyong Li. Adaptive Skeleton Construction for Accurate DAG Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2023.SCI一区/CCF-A类期刊

[6] Xianjie Guo, Liping Yi, Xiaohu Wu, Kui Yu, and Gang Wang. Enhancing Causal Discovery in Federated Settings with Limited Local Samples, International Workshop on Federated Foundation Models in Conjunction with NeurIPS 2024 (FL@FM-NeurIPS), 2024.(荣获Outstanding Student Paper Award

[7] Xianjie Guo, Kui Yu, Lin Liu, Fuyuan Cao, and Jiuyong Li. Causal Feature Selection with Dual Correction, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.SCI一区/CCF-B类期刊

[8] Xianjie Guo, Kui Yu, Fuyuan Cao, Peipei Li, and Hao Wang. Error-Aware Markov Blanket Learning for Causal Feature Selection, Information Sciences (INS), 2022.SCI二区/CCF-B类期刊

[9] Xianjie Guo, Yujie Wang, Xiaoling Huang, Shuai Yang, and Kui Yu. Bootstrap-based Causal Structure Learning, Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM), 2022.CCF-B类会议,长文

[10] Jianli Huang, Xianjie Guo(共同第一作者), Kui Yu, Fuyuan Cao, and Jiye Liang. Towards Privacy-Aware Causal Structure Learning in Federated Setting, IEEE Transactions on Big Data (TBD), 2023.SCI二区/CCF-C类期刊