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 Spatial Crowdsourcing (SC) 

Background & Problem Formulation
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 Tasks with spatiotemporal constraints 

(e.g., deadlines) are submitted to the 

platform, which performs task 

assignment to suitable workers.

 To complete a task, workers (usually 

with limited energy supply) physically 

move to the assigned position and 

submit their collected spatiotemporal 

data to the platform.



 Application: unmanned vehicles-assisted disaster response

Background & Problem Formulation

5

Unmanned Vehicles (drone) PoIs (Surv. Cameras) Obstacles (collapsed building)

 Unmanned Vehicles (UVs) equipped with multiple sensors and receivers can be

quickly deployed over disaster workzone, to provide rapid situational awareness

by collecting environmental and life data from point-of-interests (PoIs).

 We explicitly consider the problem of routing multiple UVs for disaster response.



 Formulation as a Markov Decision Process (MDP)
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Mathematically, the optimization problem is formulated as:

To solve this problem, we then formulate P1 as a MDP 𝒮, 𝒜, 𝑅, Ω, 𝛾 . In each timeslot 𝑡:

• State (𝒔௧∈ 𝒮) is all task information, including: (1) all UVs’ current location and remaining energy 

(2) all PoIs’ remaining data (3) obstacles locations.

• Action (𝒂௧∈ 𝒜) includes movement directions 𝝑௧
௨ and traveling distance 𝑙௧

௨ of each UV.

• Reward is calculated by:

where 𝑑௧
௨ and 𝑑௧ି

௨ is the amount of collected and dropped data by UV 𝑢 at timeslot 𝑡, respectively. 𝜅௧

is time-varying geographical fairness index. 𝜚௧denotes the penalty applied to UVs.

𝑷𝟏:  max
{ణ

ೠ,
ೠ}

𝜉

𝑠. 𝑡.  𝑒௧
௨ ≤ 𝑒, ∀𝑢 ∈ 𝒰

்

௧ୀଵ

 Maximize the energy efficiency 𝜉

 Limited energy consumption of UVs during movement 

and data collection

𝑟௧ =
1

𝑈


𝑑௧
௨

𝑒௧
௨  ⋅ 1 −

𝑑௧ି
௨

𝑑௧
௨ + 𝑑௧ି

௨



௨ୀଵ

⋅ 𝜅௧ − 𝜚௧

Background & Problem Formulation



7

 Background & Problem Formulation

Challenges

 Preliminaries

Our Solution: DRL-DisasterVC(3D) 

 Simulator Design

 Experimental Results

Conclusion

Outline



8

Without loss of generality, the successfully uploaded 

data depends on:

 Data collection time ௧,
௨

௧,
௨

 Do not crash into obstacles

 Transmission rate ௧
௨,

 Number of serviced PoIs ௧
௨

 SNR threshold 

UVs movement

UVs location

Scene noise

It is quite difficult to derive an optimal long-term policy for UVs scheduling by 
fully considering spatiotemporal data complexity and correlation.

Challenges

Maximize:

Data collection ratio 𝜁

Geographical fairness 𝜅

Energy efficiency 𝜉

Minimize:

Data dropout ratio 𝜎

 Optimize multiple metric simultaneously in a complex scenario



 Trade-off between environment exploration and energy consumption

9

Challenges

Energy efficiency

 Lack of exploration results in the failure of 

collecting enough data.

 Some PoIs are far-off which are hard to visit.

 Finding a trade-off between environmental 

exploration and energy consumption is non-

trivial.

Geographical fairness 
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 Deep reinforcement learning (DRL)
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start with state ଵ

action ଵ:Right

obtain reward: ଵ

state ଶ

action ଶ:Fire

state ଷ

step 1 step 2

…

obtain reward: ଶ

Reinforcement learning (RL) is to learn a state-action mapping
to maximize the a numerical accumulated reward signal.

Preliminaries

state ்



 IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures, ICML 2018 by Google
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Environment

Model

Store

Learner

Model

Queue

Actor

1. Parameters

2. Observation3. Action

4. Collect 
trajectory 5. Trajectory

6. Batch of trajectories

7. Optimize

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih,et al. 2018. IMPALA: Scalable Distributed Deep-RL with Importance 
Weighted Actor-Learner Architectures. In ICML’18, Vol. 80. 1406–1415.

Multi-actor-one-learner architecture increases sample throughput, 
but sample efficiency drops significantly. 

Preliminaries
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 Distributed DRL Framework with a 

repetitive experience replay (RER) 

for Multi-UV Planning in Disaster 

ResponseDRL-DisasterVC(3D)

Our Solution: DRL-DisasterVC(3D)

 Attentive 3D CNN Convolution with 

Pixel Control for Spatial Exploration



 Action space 𝒜 in our multi-UV scenario 

expands exponentially in dimensions, which 

enlarges the difference among 𝝅ୟୡ୲୧
.

 Limit the policy update speed by using 

truncated importance sampling

 Repetitive Experience Replay (RER) and Target network

15

 To better utilize previous experiences for multiple UVs

 To stabilize the distributed training process

Repetitive Experience Replay 

Clipped Target network

Our Solution: DRL-DisasterVC(3D)

min( , )i

i

act

tar act


 
 

 The agent learns fast when setting 𝜌 a high 

value at the cost of training instability.



 Multi-Head-Relational Attention (MHRA) for Spatial Modeling

16Zambaldi, V., David Raposo, A. Santoro, V. Bapst, Yujia Li, et al. “Deep reinforcement learning with relational inductive biases.” In ICLR’19. 

 Better extracting these relationships helps 

UVs learn more reasonable trajectories, by 

adding a MHRA module between every two 

3D CNN layers.

Query   :      


Key     :      


Value   :     
௩

 𝐻 independent attention heads indicate the 

different relational semantics.

Our Solution: DRL-DisasterVC(3D)



 Auxiliary Pixel Control (PC) for Spatial Exploration

17
Max Jaderberg, Volodymyr Mnih,Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, et al. Reinforcement Learning with Unsupervised Auxiliary Tasks. In ICLR’17.

2( ) [( ( , , )) ]aux aux
pixel t t t tL y Q s a  E

1

max ( , , )
n

aux k aux n aux
t t k a t t n t n

k

y r Q s a    


 

 Pixel difference as the “intrinsic reward”.

 ௧
௨௫ is calculated by the average absolute 

pixel difference of adjacent input state.

 ௧
௨௫is a 3D spatial grid of action values 

from 3D deconvolutional network.

Expected pixel change Real pixel change

Our Solution: DRL-DisasterVC(3D)
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 DisasterSim
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Simulator Design

 To bridge model training, testing and visualization for multi-UV trajectory planning.
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 DisasterSim

20

Simulator Design
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 DNN Hyperparameters Tuning
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We find that 4 heads in 

MHRA with 3 traversed 

times in RER give the 

best performance in 

terms of energy 

efficiency .

Experimental Results



17.3% 

 Ablation Study
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 PC helps to achieve a better spatial exploration.

 But PC sacrifices some degree of efficiency to achieve a wider spatial 

exploration, and MHRA weakens this shortcoming.

When removing both PC and MHRA, the complete version is 17.3% 

better which confirms the benefits of putting MHRA and PC together.

Experimental Results



 Illustrative Data Collection Trajectories by 3 UVs
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 UVs learn to collaborate by roughly dividing the workzone into 3 parts, and 
move around in its responsible one.

 Flying around the exterior of buildings, 
which helps achieve maximum tx rate.

Experimental Results



 Impact of No. of PoIs (P)

25

 With more deployed PoIs, UVs can collect more data without moving far away and 

achieve higher energy efficiency.

 Data collection ratio decrease significantly due to the lack of exploration.

 The gap of between SP and other algorithms gets wider with the increase of .

Experimental Results



 Impact of No. of UVs (U)
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 More UVs could result higher data collection ratio and higher fairness.

 Too many UVs (e.g., = 25) will not bring further benefit.

 SP nearly collect all data when deploying 4 or more UVs but its energy efficiency only

reaches 0.70 maximally. The energy consumption of DRL-DisasterVC(3D) and SP are

2455.82kJ and 4740.46kJ.

Experimental Results

1.16

0.98
0.88
0.70
0.68



 Impact of SNR threshold ( )
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 High SNR threshold leads to the smaller amount of PoIs to successfully upload 

their data to a UV by the tx rate constraint.

Experimental Results



 We consider a vehicular crowdsourcing problem of routing multiple UVs for 

disaster response.

 We propose “DRL-DisasterVC(3D)”, a distributed DRL framework for VC 

tasks in disaster response. 

 Distributed DRL framework with RER and clipped target network for 

learning efficiency and stability improvement

 Attentive 3D CNN with pixel control for spatial exploration.

 We designed a novel disaster response simulator, called “DisasterSim”, to 

explicitly bridge model training, testing and visualization processes. 

 We conduct extensive experiments and results verify the effectiveness of 

DRL-DisasterVC(3D) when comparing with five baselines.
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Conclusion



Thanks a lot！

Any Questions?


