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Background & Problem Formulation

B Spatial Crowdsourcing (SC)

» Tasks with spatiotemporal constraints
(e.g., deadlines) are submitted to the
platform, which performs task
assignment to suitable workers.

» To complete a task, workers (usually
with limited energy supply) physically
move to the assigned position and
submit their collected spatiotemporal

data to the platform.
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Background & Problem Formulation

B Application: unmanned vehicles-assisted disaster response
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Unmanned Vehicles (drone) Pols (Surv. Cameras)  Obstacles (collapsed building)

» Unmanned Vehicles (UVs) equipped with multiple sensors and receivers can be
quickly deployed over disaster workzone, to provide rapid situational awareness
by collecting environmental and life data from point-of-interests (Pols).

» We explicitly consider the problem of routing multiple UVs for disaster response.
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Background & Problem Formulation

B Formulation as a Markov Decision Process (MDP)
Mathematically, the optimization problem is formulated as:

P1: {gﬁlﬁ ¢ > Maximize the energy efficiency é
ttt
T > Limited energy consumption of UVs during movement
s.t.ze}‘Seo,VuEu _
o and data collection

To solve this problem, we then formulate P1 as a MDP (S, A, R, Q,y). In each timeslot t:

« State (s;€ ) is all task information, including: (1) all UVs’ current location and remaining energy
(2) all Pols’ remaining data (3) obstacles locations.

» Action (a;€ A) includes movement directions 9} and traveling distance [}* of each UV.

 Reward is calculated by: Y <

B 1zd%‘
=y et

u=1

1 f— > o
| t t

where d and d}-_ is the amount of collected and dropped data by UV u at timeslot ¢, respectively. k;
is time-varying geographical fairness index. po,denotes the penalty applied to UVs.
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Challenges

B Optimize multiple metric simultaneously in a complex scenario

Without loss of generality, the successfully uploaded

data depends on:

> Data collection time tf, =7 — 1, - Maximize:

— UVs movement : :
» Do not crash into obstacles Data collection ratio ¢

Geographical fairness «

—  UVs location Energy efficiency ¢

> Transmission rate v,"” 7

> Number of serviced Pols |PY| i L
Minimize:
» SNR threshold snr Scene noise _
Data dropout ratio o

It is quite difficult to derive an optimal long-term policy for UVs scheduling by
fully considering spatiotemporal data complexity and correlation.



Challenges

B Trade-off between environment exploration and energy consumption

— 54 L3 dp
Geographical fairness «=—Z7—7—7 Energy efficiency ¢= l—6) K
Py () er

» Lack of exploration results in the failure of
collecting enough data.

» Some Pols are far-off which are hard to visit.

» Finding a trade-off between environmental
exploration and energy consumption is non-

trivial.
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Preliminaries

B Deep reinforcement learning (DRL)

start with state s; state s, state s state s;
\ gi obtaln reward: r (. ’ btai d:
1 optain reward. TZ

step 1 action a;:Right step 2

Reinforcement learning (RL) is to learn a state-action mapping
to maximize the a numerical accumulated reward signal.
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Preliminaries

B [MPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures, ICML 2018 by Google

( “
(7 ™ r h
Actor Learner 7. Optimize
" Environment ] 1. Parameters Y
3. Action 2. Observation MOTdeI
| < l
Model - 6. Batch of trajectories
4. Collect . |
rajoctory (Soe 5. Trajectory R Queue
\
L J \. /

Multi-actor-one-learner architecture increases sample throughput,
but sample efficiency drops significantly.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih,et al. 2018. IMPALA: Scalable Distributed Deep-RL with Importance 12
Weighted Actor-Learner Architectures. In ICML’18, Vol. 80. 1406-1415.
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B Our Solution: DRL-DisasterVC(3D)
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» Distributed DRL Framework with a

A new batch of RER
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each is: e J Ind:rjator
{sr',i U ’;',J}:'=r ; ;
= 2 bl
“«
Sample

{2

__broadcast
repetitive experience replay (RER) Learner
. . . ) L oty (6) *~ - Target
for Multi-UV Planning in Disaster 7 ) L@ Network
K> total 9 TUpdate
. 91 ut Ei Lmiue(&)‘i I/;,(SI) </Behavior
ResponseDRL-DisasterVC(3D) Ly (1) *— 05277 Network

Tf - 3_. n:ﬂ:::fead-?a{;tg)a] Attention pixe; :g;,jiﬂ .
— orla i geiEe | [As/ gl
> Attentive 3D CNN Convolution with || =" = L= I
Pixel Control for Spatial Exploration e B ' .
[Sien |2y St s S o
n-step trajectories ’;55,5 ;;3;:3:5 N\é?\bfrk i’

14



Our Solution: DRL-DisasterVC(3D)

B Repetitive Experience Replay (RER) and Target network

> To better utilize previous experiences for multiple UVs — Repetitive Experience Replay

> To stabilize the distributed training process — Clipped Target network
- A new batch of RER : , : :
(f°t°” | poprialsmril > Action space A in our multi-UV scenario
Ll I | each is: Indicator
(Actor 2 iR (" \ expands exponentially in dimensions, which
’ \ g
Actor . gt Sample enlarges the difference among ;.
tLL Learner o _ _
. Lo (0) e e » Limit the policy update speed by using
A olic arge
. o Far «— Ne‘tvsork truncated importance sampling min(ZL, p) 22
bglﬁ;g; T by L Le’?me}’ ) 7 tar 2 e,
P network a EE;V' total < I ( ¢) Ty TUpdale '
N j (91 #l 1 value « V;,(S ) - > Th i -
) « Beh e agent learns fast when setting p a high
i \L (1) — 071 Network ° o g.p °
. J R T value at the cost of training instability.

15



Our Solution: DRL-DisasterVC(3D)

B Multi-Head-Relational Attention (MHRA) for Spatial Modeling

H=3

T s

Tm
-]

Transpose

— 11 =

Add &

Concat
Head

Conv
3D

16 filters
5x5x5
stride 1

Zambaldi, V., David Raposo, A. Santoro, V. Bapst, Yujia Li, et al. “Deep reinforcement learning with relational inductive biases.” In ICLR’19.
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Pooling
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3x3x3

Attention
Block

stride 1

Multi-Head-Relational Attention
(MHRA)

Normalize

» Better extracting these relationships helps
UVs learn more reasonable trajectories, by
adding a MHRA module between every two
3D CNN layers.

Query : q" =f,(e)

Key : k"= fi(e)
Value : v" = f,(e)

» H independent attention heads indicate the

different relational semantics.

QKT
O = softmax 4%
! ( i )
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Our Solution: DRL-DisasterVC(3D)

B Auxiliary Pixel Control (PC) for Spatial Exploration

Lpixel (77) = E[( ytaux

0" (s,,a,,m)]]

Expected pixel change

aux

n

aux __ k _ aux n /

Vi _27/ Vivk TV max .. Qt (St+n9at+n977)
k=1

Pixel Control

(PC)

Aslf

Pooling

3D

- DeConv

Max Jaderberg, Volodymyr Mnih,Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, et al. Reinforcement Learning with Unsupervised Auxiliary Tasks. In ICLR’17.

Real pixel change

» Pixel difference as the “intrinsic reward”.

> ri** is calculated by the average absolute
pixel difference of adjacent input state.

> Q" is a 3D spatial grid of action values

from 3D deconvolutional network.
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B Simulator Design

18



Simulator Design

B DisasterSim
» To bridge model training, testing and visualization for multi-UV trajectory planning.

Scene 1: City Earthquake Scene 2: Rural Big Fire Unit
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Simulator Design

B DisasterSim
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Outline

B Experimental Results
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Experimental Results
B DNN Hyperparameters Tuning

H=1 H=2|H=4|H=8 H =16
{10780 0.843 0340 0.836  0.840
b =1 |2 0.140 0.127 0.131 0.133  0.135
x | 0.814 0873 0.877 0.866  0.852
£ 1117 1275 1309 1.186 1.201
] 0821 0905 0913 0.879 0.855
b —o | 0| 0127 0119 0.117 0124 0.127
K= 110852 0921 0934 00912 0.879
E1 1191 1402 1388 1.262 1.193
10850 0.890 0.920 0.874 0.808
——5||.o [ 0122 0120 0.109 0129 0.142
K~ 1< ] 0862 00927 0943 0892 0.840
£ 1238 1358 1.437 1235 1.135
{10843 0864 0.874 0.830 0.797
he =4 | 00129 0123 0119 0134 0.158
K k | 0.860 0.894 0.905 0.871 0.818
£ 1150 1316 1317 1.181 1.072

We find that 4 heads in
MHRA with 3 traversed
times in RER give the
best performance in
terms of energy
efficiency ¢.
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Experimental Results
B Ablation Study

¢ a K £
DRL-DisasterVC(3D) 0.921 0.108 0.945 1.440

- w/o PC 0.876 | 0.114 0.906 [1.355
- w/0o MHRA 0.898 | 0.119 0.919 |[1.304
- w/o PC, MHRA 0.842 0.133 0.867 1.227 173%§

» PC helps to achieve a|better spatial exploration.

» But PC sacrifices some degree of efficiency to achieve a wider spatial

exploration, and|MHRA weakens this shortcoming.

» When removing both PC and MHRA, the complete version is 17.3%

better which confirms the benefits of putting MHRA and PC together.
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Experimental Results

B [llustrative Data Collection Trajectories by 3 UVs

» UVs learn to collaborate by roughly dividing the workzone into 3 parts, and
move around in its responsible one.

» Flying around the exterior of buildings,
which helps achieve maximum tx rate.

SNR Threshold

/
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Experimental Results
B [mpact of No. of Pols (P)

» With more deployed Pols, UVs can collect more data without moving far away and

achieve higher energy efficiency.

» Data collection ratio { decrease significantly due to the lack of exploration.

» The gap of ¢ between SP and other algorithms|gets wider|with the increase of P.
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Experimental Results
Impact of No. of UVs (U)

More UVs could result

>
>
>

higher data collection ratio and higher fairness.

reaches

0.70 maximally.

2455.82kJ and 4740.46kJ.
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Too many UVs (e.g., U = 25) will not bring further benefit.
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Experimental Results

B Impact of SNR threshold (snry)

» High SNR threshold leads to the smaller amount of Pols to successfully upload

their data to a UV by the tx rate constraint.
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Conclusion

B \We consider a vehicular crowdsourcing problem of routing multiple UVs for
disaster response.
B We propose “DRL-DisasterVC(3D)", a distributed DRL framework for VC
tasks in disaster response.
» Distributed DRL framework with RER and clipped target network for
learning efficiency and stability improvement
» Attentive 3D CNN with pixel control for spatial exploration.
B \We designed a novel disaster response simulator, called “DisasterSim”, to
explicitly bridge model training, testing and visualization processes.
B \We conduct extensive experiments and results verify the effectiveness of
DRL-DisasterVC(3D) when comparing with five baselines.
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Thanks a lot!

Any Questions?



